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Abstract-Dissipative structures of autocatalytic reactions with initially uniform concentrations 
are studied in tubular flow reactors. A unique steady state exists in a continuous stirred tank reactor. 
Linear stability analysis predicts either a stable node, a focus or an unstable saddle4ocus. Sustained 
oscillations around the unstable focus can occur for high values of Damk6hler number. In distributed 
parameter systems, travelling, standing or complex oscillatory waves are detected. For low values 
of Damk/Shler number, travelling waves with pseudo-constant patterns are observed, With interme- 
diate values of Damkghler number, single or multiple standing waves are obtained. The temporal 
behavior indicates also the appearance of retriggering or echo waves, For high values of Damk6hler 
number, both single peak and complex multipeak oscillations are found. In the cell model, both regular 
oscillations near the inlet and chaotic behavior downstream are observed. In the dispersion model, 
higher Peclet numbers eliminate the oscillations. The spatial profile shows a train of pulsating waves 
for the discret model and a single pulsating or solitary wave for the continuous model. 
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INTRODUCTION 

Autocatalytic reactions represent a very important 
class of chemical reactions with a variety of applica- 
tions in combustion, biological reactors, and homoge- 
neous and catalytic reactors. To mention only a few: 
Lotka's model on population dynamics [1], the Brus- 
selator description of theoretical tri-molecular reac- 
tions [2-5], the Belousov-Zhabotinskii reaction [6-7], 
the modified Lotka-Volterra model for hydrocarbon 
oxidation and cool flames [8], and Yamazaki's reaction 

E9~I. 
There are striking parallels between isothermal au- 

tocatatytic and exothermic first-order reactions. While 
there is a systematic analysis available on exothermic 
reaction systems, no extensive study has been made 
of the corresponding isothermal autocatalytic proto- 
types where the feedback is not thermal but autocata- 
lyric. Fascinating dissipative structures (spatially, tem- 
porally or even spatiotemporally organized states) have 
been studied both theoretically and experimentally [2- 
7]. Among them, symmetry breaking structures, wave 
trains including planar and standing waves, and target, 
spiral and scroll patterns as well as chaotic behavior 
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have drawn the attention of mathematicians, physi- 
cists, biologists, chemists and chemical engineers. 

The Belousov-Zhabotinskii reaction, oxidation of 
malonic acid by potassium hromate with ceric/cerous 
ions as catalysts, has been extensively studied. Tatter- 
son and Hudson [10] observed chemical waves of pul- 
se type propagating in a tube, in the absence of con- 
vection effects. Frequency, speed and wavelength did 

not change significantly during the process. This obser- 
vation reveals the rich spectrum of wave phenomena 
in the Belousov-Zhabotinskii reaction [11]. Marek and 
Svobodova [12] observed experimentally sustained 
oscillations and jump phenomena (transition of oscilla- 
tory behavior to steady states) in a continuous stirred 
tank reactor (CSTR) and standing as well as travelling 
waves in tubular flow reactors. Schmitz, Hudson and 
Graziani [13-14] established simple singlepeak and 
complex multipeak oscillations, and chaotic behavior 

in a CSTR. R6ssler [15] also observed an irregular 
screw-type chaotic behavior in a CSTR. Simoyi et al. 
[16] noticed subharmonic bifurcations of a limit cycle 
leading to alternating complex periodic and chaotic 
regimes in a CSTR, Roux [17] studied experimentally 
bifurcations of a limit cycle leading to quasi-periodic 
oscillations. 

To our knowledge, no systematic studies have.' been 
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Fig. 1. Schematic sketch of the cell model with backflow, q,,. 

i + I  N N+I  

reported on dissipative structures of autocataiytic reac- 
tions occurring in distributed parameter flow systems, 
for example, tubular flow reactors. In this paper we 
attempt to comprehend the interplay of transport pro- 
cesses, such as diffusion, convection and complex au- 

tocatalytic kinetics. One-dimensional (1D) model is con- 
sidered, Emphasis is placed on the problems of local 
stability in a CSTR, wave propagation phenomena for 
standing, travelling and spatio-temporal waves, and 
chaotic behavior. Possible differences between dis- 
crete and continuous descriptions of distributed param- 
eter flow systems will be discussed, 

GOVERNING E Q U A T I O N S  

Consider the following reactions whose rates are 
described by Eq. (I). These autocatalytic reactions 
give rise to undamped oscillations in a closed system 

[18~. 

R dCl 

R~= @ = k , C l -  k~C~ 

R3 = dC:~ =k~C,~-k3C'~ (1) 
' dt . . . .  

In this paper we are analyzing an isotherma] autocata- 
lyric system occurring in tubular flow reactors. 

Two distinct types of description of mass dispersion 
in tubular flow reactors have been adopted st) far. The 
dispersion model assumes that the transport may be 
phrased in terms of continuous description while the 
cell model visualizes the behavior of tubular flow reac- 
tors by a sequence of well-stirred tank reactors as 
shown in Fig. L It has been shown in the literature 
[19-20j that certain differences, particularly concern- 
ing multiplicity, do exist between cell and dispersion 
models for an exothermic first-order reaction. There- 
fore, both the cell model with backflow and the disper- 
sion model are considered. Isothermal conditions, an 
identical volume of each cell, ~ m e  back-flow rates 
for all components, and no changes of physical proper- 
ties are assumed in the present paper. 

Mass balances around the i-th tank in the one-di- 
mensional cell model as shown in Fig, 1, yield the 
following dimensionless differential-difference equa- 
tions [28]: 

dU~ =(I+K. , )U,  I-(I+2K,~)U,+K.~U~,I 
d~ 

+ Da(U, alU, W,) 

dV, 
- - = ( I + K . , ) V ,  ,-(I+2K,,,)V~-K,,,V,.~ 
d~ 

+ Da(U, - a,N,) 

dW, , + 
d~ = ( I+K. , )W,  ~-(I+2K,,,)}L K,,,%\., 

Da(a~ V,-  a:~W,). (2) 

The mass balance of two fictitious cells, 0 and N+  1, 
gives 

i=0:  (1+ K.,)UI,= 1 + K.,U, 
(1 + K,,,)V~ = K.,V~ 
(1 + K~ )W,~ = t~,W~ 

i = N + l :  Ux~l=:Uv V~-I=V~: W~:~ ~=W~. (3) 

The corresponding dispersion model is described 
by three coupled partial differential equations of para- 
bolic type [28j: 

r Pe 0x 2 0x 

A~L == ~ 02V _ _oV + D a ( U -  a2V) 
0~: Pe 0x ~ 0x 

. 2 W .0w" == 1 0='W__ 0~v + Oa(ct~V-a:(',u (4) 
0~ Pe 0x e 0x 

subject to Danckwerts boundary- conditions 

1 0U 
x=0,  r>O: I = U  

Pe ax 

v : -L  av 
Pe 0x 

w=A_ ow 
Pe ax 

x = N ,  r>0:  0UU _ 0V _ o W  ::0. (5) 
0x Ox 0x 

Here we have denoted by U, V, W the dimensionless 
concentrations of C~, C~ and Ca, respectively, a~, a~, 
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and ct:~ are dimensionless kinetic constants, Da is the 
Damk6hler number, K,, the mass backflow ratio, Pe 
axial particle Peclet number for mass, and r the dimen- 
sionless time defined by 

�9 
L' , :~ v,: ~77 
Da=-V-kj K,, ::q-'~ Pc=  udp v = ~  

q q -D-  

C,&:~ k~ ka z 

ANALYSIS  AND NUMERICAL R E S U L T S  

Numerical integration of sets of ordinary differential 
Eqs.(2)-(3) was performed using Gear's method for 
integration of stiff systems of ordinary differential 
equations. The error of integration ~as controlled to 
six decimal places. The set of nonlinear parabolic par- 
tial differential Eqs. (4)-(5) was integrated by a Crank- 
Nicolson method with an automatic time-step adjust- 
ment. The error of integration was controlled to four 
significant decimal places. The majority of calculations 
was performed using forty mixing cells (N :: 40) in the 
axial direction. In order to compare the results from 
both models, the dimensionless length(x) in the disper- 
sion model was converted into the equivalent number 
of celts(i) in the corresponding cell model  
1. Lumped  parameter  s y s t e m s  

A detailed understanding of lumped parameter sys- 
tems may provide a deeper insight into the dynamics 
of corresponding distributed parameter systems. For 
a single CSTR, Eq. (2) is simplified to a three variable 
system represented by Eq.(7): 

dU 
- 1 - U + Da(U-  rob'CO) = F(U, V, W) 

dv 

dV 
. . . . . . . . . . .  V+Da(U-aeV)=G(U,  V, W) 
dv 

dW 
. . . .  W+Da(a~V-c~:,W)=H(U, V, W). (7) 
dz 

The presence of multiple steady states in Eq.(7) 
can be evaluated by setting F, G, and H equal to zero 
and analyzing the resulting set of three nonlinear algeb- 
raic equations. Among the four governing param- 
eters in Eq. (7). the Damk6hler number (Da) is the most 
important parameter for understanding the properties 
of flow systems. After simple algebraic manipulations 
a quadratic equation results for the concentration U, 
(the subscript s refers to steady state conditions): 

aU~ ~ + 13U~ + y = 0. (8) 

1.0 

T 

c 

Fig. 2. 

I . . . .  / . . . .  , . . . . . . . . . . . . . . . . . .  

5 I0 ~5 20 
IDa = 

L o c a l  stability region in the C S T R .  

ct2 = ~:~ = 0.'2. 

2C 

t 
US 

tO 

l, =|= 03 (HB = 5,89 ) 
Z 0.21HB=7.0"/I 
3. 0s I0,52 ) 

t .  O,@ {H8=20.90l 
5. L0(HB= 25.'/2l 

O0 5 IO 15 20 
041 ; 

Fig. 3. Steady states versus Damk6bler numbeE in the 
CSTR. 
ct2=u:~=02 (7? and HB denote Hopf-bifurcation 
points). - -  stable steady state; ...... unstable 
steady state; OOOO stable periodic solution. 

Constants ct, 13, and y are defined by 

ct = chcv, Da :~ 
13 = 1 + (ct2 +c ta -  1)Da.- c~:~Da:-' - ct~a3Da :~ 
y = - I -- (a., + a:0Da - ct~a:~Da 2. (9) 

Although multiple steady states are frequently obser- 
ved in autocatalytic systems, our analysis revealed that 
for the autocatalytic system in question, multiple solu- 
tions do not exist. 

Local stability properties in a region close to steady 
states can be predicted from the eigenvatues, ;k, satis- 
fying the cubic equation 

;~:~ + 5X e + e;~ + g = 0. (10) 

Here the constants 8. e, and ~ can be obtained as fol- 

low: 

,L \ 0 V  h \ 0 W /  
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Fig. 4. Time evolution depending on the Damkiihler num- 

ber in the CSTR. 
al=a,,_=a:~=0,2. Da is: (a) 2,0, (b) 4.0. (c) 8.0, (d) 
10.0, (e) 16.0. 
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Fig. 5. Period of oscillations versus Damkiihler number 

in the CSTR. 
Oq = ft,2 = et:~= 0.2. 

e=( 0~' oG 'oF ]A-8~V" ), 

(11) 

Linear stability analysis shows that a stable node 
and a focus, and an unstable saddle4ocus may exist 
in the CSTR as shown in Fig. 2, A stable limit cycle 
may occur around unstable steady states (see Fig. 3). 
Hopf-bifurcation points occur at high values of Da with 
increasing values of kinetic constants a~ as depicted 

5 

3 

2 "r=2 ~ 8 12 16 

1 

~ . . . . .  lo 

~ ,:,,, / . . . . .  " 

2'o 3o 
Cell NO, ,  i 

Fig. 6. Travelling waves in a tubular system. 

D a :  0,01, cq = ct~ = ct:~ = 0.2 (s.s. denotes steady sta- 
tes), 

in Fig, 3. The oscillatory behavior exists in the region 
of higher Da's, i.e, at low flow rates with higher feed 
concentrations. Low flow rates favor the oscillations 
while higher flow rates result in steady state modes 
of operation (see Fig, 4). These trends are in accord- 
ance with experimental observations on the Belousov- 
Zhabotinskii reaction taking place in a CSTR [13-16J. 
[solas and mushrooms in steady state diagrams "con- 
centration versus flow rates", which Gray observed 
for his quadratic and cubic autocatalytic reactions 
E21], are not detected in our system. 

The period of oscillations increases with decreasing 
values of Da, see Fig. 5. This result is in qualitative 
agreement with experimental observations obtained 
by Marek [12] on the Belousov-Zhabotinskii reaction 
in a CSTR. 
2. Dis tr ibuted  parameter  s y s t e m s  

Wave phenomena in distributed parameter systems 
can be qualitatively explained as a kind of interaction 
between two or more coupled or forced oscillators. 
Pismen [221 analyzed conditions for spatial and/or 
temporal order to emerge from a homogeneous steady 
state: such as inhomogeneous oscillating states (wave 
patterns). Neu [23~, using singular pertubation analy- 
sis around homogeneous oscillatory states, studied in 
detail the phase desynchronization of two coupled os- 
cillators in order to develop criteria for wave propaga- 
tion. 

Apart from phase desynchonization, external gra- 
dients and inhomogeneities, the geometry of systems, 
and initial conditions can also play an important role 
in wave propagation phenomena (target. spiral waves 
and scroll patterns). 

The analysis presented below considers only one 
component, C$, in the feed (C~==C:~=0). Initial condi- 
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Fig. 7. Travelling waves in a tubular system. 
Da= 0.05, a~= a2 = ct:~= 0.2. 
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Fig. 8. Single standing wave in a tubular system. 
Da= 020, al=a~=a,~=0.2. 

tions considered are U=3.0, V=:W=4.0. 
As shown in Figs. 6-11, travelling waves are obser- 

ved at low Da's while standing waves prevail at inter- 
mediate values of Da. The Damk6hler number can 
be expressed as the ratio of the characteristic time 
for bulk mass flow to that for chemical reactions. The- 
refore, high flow rates favor travelling wave pheno- 
mena while intermediate flow rates support the occur- 
rence of standing waves. 

The velocity of travelling waves increases slightly 
during the initial stage, passes through the maximum, 
and then decreases again before approaching particu- 
lar stable structures in space. The shape of travelling 
waves depicted in Figs. 6-7 is continually changing~ 
This trend is typical for problems featuring high values 
of Da. 

Steady state profiles presented in Figs. 6-11 show 
the typical features of spatial structures. Increasing 
values of Da modifies wave patterns from a travelling 

t 2.0 
2. 6.0 
3 &O 
& 12.0 
5. s.s 

~0 20 30 to 
Celt No., i 

Fig. 9. Single standing wave in a tubular system. 
Da= 0~50, a~=a2=a:~=0.2. 
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Fig. I0. Multiple standing waves in a tubular system. 

Da= 1.00, al=~x2=~:~=O.2. 
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Fig. !1, Multiple standing waves in a tubular system. 
Da= 2.00, al=a~=a~=0.2, 

to a standing wave. The transition occurs around D a ~  
0.1. Standing waves in Figs. 10-11 remind one of the 
characteristics of triggering waves emerging from a 
uniform homogeneous state. A single spatial structure 
(or standing wave) appears in Figs. 8-9 in the region 
near the inlet. 

With increasing values of Da, Figs. 10-11, two or 
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Fig. 12, Temporal behavior at different positions in a tu- 
bular system, 
Da=020, ai=a2=a~=0.2. Cell No. is: (a) 1, (b) 
5, (c) 9, (d) 13, (e) 17, (t) 21, (g) 25, (h) 29. (i) 
33, (j) 37. 
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Fig. 13. Temporal behavior at different positions in a tu- 
bular system, 
Da=2.0, ch=a2=c~:~=0.2. Cell No, is: (a) 1, (b) 
5, (c) 9, (d) 13, (e) 17, (f) 21, (g) 25, (h) 29, (i) 
33, (j) 37. 

more triggering waves or multiple standing waves ap- 
pear in the system, after the first standing wave has 
already developed upstream near the inlel. This phe- 
nomenon may be elucidated in terms of a retriggering 
process or echo wave, originally proposed by Krinsky 
[24] for two coupled monostable generators. Consider 
two coupled elements at rest. Then, if one element 
is excited, the second also becomes excited after some 
delay A. If the delay time (A) happens to lie between 
the refractory and the excitement time (i.e., T~<A< 
T~), a retriggering wave may propagate in distributed 
systems. The time history for travelling and standing 
waves at different positions in the flow system is 
shown in Figs. I2 and 13, respectively. Fig. 13 reminds 
one of the behavior of retriggering waves. The dyna- 
mical behavior of the cell model thus turns out to 
be in good qualitative agreement with that in the cot- 

0 . . . .  ~ k k k k  J)~kk.~L)LA... 

lo I0 
o - - kkkkkkkk~kkt 

L :I "' 10 1 

I0~ {Q} I0 U ' I  

2~o ~9o 30o 3~o 320 280 290 3oo 3~o 3~ 

Fig. 14, Comparison of the oscillations at different posi- 
tions in the I-D cell model. 
Da=8.0. a~=a~=ct~--=0.2. K,,,=0.0. Cell No. is: 
(a) 1, (b) 5, (c) 9, (d) I3, (e) 17, (f) 21. (g) 25, 
(h) 29, (i) 33, (j) 37. 
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Fig. 15.Three-dimensional stereoplot at different posi- 
tions in the I-D cell model, 
Da=8.0, ch=ct2:a:~=0.2. K,~=0.0, Ceil number 
is: (a) 1, (b) 9, (c) 33. 

responding dispersion mcxtel. In the range of low Da's 
leading to a stable state, the backflow for mass has 
no qualitative effect on the dynamics of autocalytic 
reactions. 

Based on the analysis for a single CSTR we can 
expect complex oscillatory behavior for high values 
of Da. Temporal behavior of concentrations at differ- 
ent positions in the tubular system, calculated from 
the 1-D cell model with no backflow (K,,,=0.0) is 
shown in Fig. 14. The oscillatory profile of limit cycle 
type, generated in the first celt, propagates down- 
stream the system. The amplitude of the "limit cycle" 
shrinks and the regular behavior changes toward corn- 
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U 5 (c)  (h)  

0L.:\ 

0 ~0 20 30 t.o 0 }0 20 30 .'.0 
Cell No,,i ~ 

Fig. 16. Spatial concentration profiles in the I-D cell mod- 
el. 
Da=8.0, c 4 : ~ : a : ~ : 0 . 2 .  K,,,~:0.0. Time is: (a) 
5.6, (b) 6.6, (c) 11,0, (d) 12.0, (e) 21.4, (f) 22.4, 
(g) 31.8, (h) 32.8, (i) 318.4, (i) 328.4. 

plex multipeak and eventually chaotic-type oscilla- 
tions. The transition to an irregular behavior occurs 
near ceil twenty-one, see Fig. 14f. A 3-dimensional 
plot clearly demonstrates the changing type of the os- 
cillations (see Fig. 15a-15c). Chaotic-type behavior in 
the rear part of the system is depicted in Fig. 15c. 
This figure shows a "spiral-type" of chaotic oscilla- 
tions. The corresponding spatial concentration profiles 
in the t-D cell model at different times are shown 
in Fig. 16. 

The dynamics of the 1-D cell model can be viewed 
in terms of a set of forced oscillators. The output con- 
centration from the preceding cell becomes the forcing 
function of the concentration fed to the next oscilla- 
tor. When any of these oscillators is subjected to an 
oscillatory input, synchronization phenomena can be 
expected. When the frequency of the input is fairly 
close to the natural frequency, a simple type of forced 
oscillation occurs. The range implied by "fairly close" 
depends on the amplitude of the input. The numerical 
study by Tornita and Kai [25] indicated that at input 
frequencies near twice the natural frequency, and for 
sufficiently large input amplitude, the subharmonic 
oscillation becomes unstable and may give rise to irre- 
gular behavior. Fujisaka [26] also showed that a set 
of two or three coupled oscillators in a discrete model 
may exhibit chaotic behavior for a certain interval of 
parameters. Marek and Schreiber [27] also numerically 
observed chaotic behavior for two identical oscilla- 
tors of a Brusselator model with different diffusion 

I:! '~ 'Ool,. ....... " 

0 0 

0 ~ . . . . . . . . . . . . . . . . . . . . . . . .  ~ 0 ~, ,, ~ 

,o{ (a| ~;1 (,l 

~  9o ~oo ;~o ~2o 8o gb " I N '  do ' ~Jo 

Fig. 17. Temporal behavior at different positions in the 
I-D dispersion model, 
Da :: 8.0, ct~ =: ct2 = a:~ = 02, Pe =, 2.09 (Re = 100). 
Axial coordinate is: (a) 1.0. (b) 5.0, (c) 9.0, (d) 
13.0, (e) 17,0, (fl 21.0, (g) 25,0, (h) 29.0. (i) 33.0, 
(j) 37.0. 

5 r~_ {G) r (el 

. . . .  0 .  - - J L  

0 10 2o ~0"~600 1 '0  26 30 /,0 
A x i o l  coorc i in~fe~  x - - . a -  

Fig. 18. Spatial concentration profiles in the 1-D disper- 
sion model. 
Da=8.0, a~=ct2:ct3=0.2. Pe=2.09 (Re=100). 
Time is: (a) 5.6, (b) 6.6, (c) ll.0, (d) 12.0, (e) 21.4, 
(f) 22.4, (g) 71.6, (h) 72.6. 

coupling for the two components, Fig. 14 may be said 
to indicate subharmonic temporal and spatial bifurca- 
tions in the tubular system. In a 1-D cell model, the 
backflow has no significant qualitative effect on the 
dynamics of oscillatoH, waves propagating in tile reac- 
tor. However, an increasing backflow does give rise 
to a phase lag between the oscillations. This lag in- 
creases with time. The backflow rate for mass (K~) is 
calculated by using the formula proposed in [-28]. 

The dynamic behavior of the 1-D dispersion model 
is shown in Fig, 17. The corresponding cell model 
was displayed in Fig. 14. For low values of the particle- 
related Peclet number, the temporal behavior of the 
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Fig. 19. Temporal behavior at different positions in the 

I-D dispersion model. 
Da=&0, (I~=~==ct~=0.2. Pe=0.72 (Re==0.3). 
Axial coordinate is: (a) 1.0, (b) 5.0, (c) 9.0, (d) 
13.0, (e) 17.0, (f) 2t.0, (g) 25.0, (h) 29.0, (i) 33.0, 
O) 37.0. 

dispersion model closely resembles, in the qualitative 
way, that observed in the cell model (cf. Fig. 19 with 
Fig. 14). 

Increasing values of Pe in the dispersion model sup- 
presses the occurrence of spatial structures. This con- 
clusion is in accordance with previous results for 
exothermic reactions [_29]. A comparison of axial con- 
centration profiles for the cell and the dispersion mod- 
el show different types of behavior, see Figs. 16 and 
18. We observed irregular dynamic behavior for the 
cell model while regular oscillations were always estab- 
lished for the dispersion model. 

CONCLUSIONS 

Dissipative structures of autocatalytic reactions was 
studied both in distributed and lumped parameter 
flow systems. 

In a continuous stirred tank reactor, uniqueness of 
steady states exists. A linear stability analysis predicts 
a stable node, a stable focus, and a saddle-focus to 
be possible in the CSTR. Sustained oscillations around 
the unstable focus can occur for high values of the 
Damk6hler number. The period of the oscillations in.- 
creases with increasing flow rates. 

In the distributed parameter system, several kinds 
of wave phenomena such as travelling, standing and 
complex oscillatory waves were established. 

For low values of Da, Da70.01-0.05, travelling 
pseudo-constant pattern waves were detected. The 
characteristic steady state shows pattern formation in 
the spatial dimension. 

For intermediate values of Da, Da70.1.-2.0, single 

or multiple standing waves were obtained. The num- 
ber of standing waves increases with increasing values 
of Da. A numerical simulation starting from different 
initial conditions revealed that unique multiple stand- 
ing waves occur. The tempporal behavior, at each 
position in the system, may exhibit the characteristics 
of retriggering or echo waves, particularly so at Da= 
2.0. 

For high values of Da, oscillating waves in the spa- 
tial dimension were observed. The results of simula- 
tion in a 1-D cetl model show that regular oscillations 
can occur near the inlet but these oscillations change 
into irregular ones at a certain axial position. This 
suggests that subharmonic limit cycle bifurcations, 
leading to chaotic behavior, are possible. The effect 
of backflow does not change the quality of dynamical 
phenomena in the l-D cell model except for the fact 
that increasing the backflow rate shifts the phase lag 
of the oscillation. 

Dynamic properties of the 1-D dispersion model are 
strongly dependent on the values of Peclet number. 
Higher values of Pe suppress oscillations, Spatial pro- 
files show a train of pulsating waves in the 1-D cell 
model and a single pulsating or solitaw wave in the 
corresponding dispersion description. 

NOMENCLATURE 

C : concentration 
D : diffusion coefficient 
Da :Damk6hler number defined by Eq. (6) 
dp :diameter of particle 
F, G, H : defined by Eq. (7) 
i : cell number 
K,. :mass back flow rate defined by Eq. (6) 
k~, k2, k:~ : reaction rate constants 
N :total cell number 
Pe :Peclet number defined by Eq.(6) 
q : flow rate 
q., :back flow rate 
R~, R~, R:~ : reaction rates defined by Eq. (1) 
Re : Reynolds number 
t : time 
U : mean velocity of fluid through tubular flow reac- 

tor 
U :dimensionless concentration of C1 defined by 

Eq. (6) 
v :volume of a CSTR 
V :dimensionless concentration of C~ defined by 

Eq. (6) 
W :dimensionless concentration of C_,. defined by 

Eq. (6) 
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x : dimensionless axial length defined by Eq, (6) 
z : axial length 

Greek Letters  
a : defined by Eq. (9) 
a, ct2, ct:~ : dimensionless rate constants defined by Eq. 

(6) 
[3 : defined by Eq. (9) 
y : defined by Eq. (9) 
5 : defined by Eq. (11) 
A : delay time 
g : defined by Eq. (11) 

: defined by Eq. (11) 
L : eigenvalues 
r :dimensionless time defined by Eq. (6) 

Subscr ip ts  
i : cell number 
s : steady state 
o : initial state 
1, 2,3 :components of 1. 2, and 3, respectively 
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